Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin.
نویسندگان
چکیده
During morphogenesis, forces generated by cells are coordinated and channeled by the viscoelastic properties of the embryo. Microtubules and F-actin are considered to be two of the most important structural elements within living cells accounting for both force production and mechanical stiffness. In this paper, we investigate the contribution of microtubules to the stiffness of converging and extending dorsal tissues in Xenopus laevis embryos using cell biological, biophysical and embryological techniques. Surprisingly, we discovered that depolymerizing microtubules stiffens embryonic tissues by three- to fourfold. We attribute tissue stiffening to Xlfc, a previously identified RhoGEF, which binds microtubules and regulates the actomyosin cytoskeleton. Combining drug treatments and Xlfc activation and knockdown lead us to the conclusion that mechanical properties of tissues such as viscoelasticity can be regulated through RhoGTPase pathways and rule out a direct contribution of microtubules to tissue stiffness in the frog embryo. We can rescue nocodazole-induced stiffening with drugs that reduce actomyosin contractility and can partially rescue morphogenetic defects that affect stiffened embryos. We support these conclusions with a multi-scale analysis of cytoskeletal dynamics, tissue-scale traction and measurements of tissue stiffness to separate the role of microtubules from RhoGEF activation. These findings suggest a re-evaluation of the effects of nocodazole and increased focus on the role of Rho family GTPases as regulators of the mechanical properties of cells and their mechanical interactions with surrounding tissues.
منابع مشابه
Equatorial Assembly of the Cell-Division Actomyosin Ring in the Absence of Cytokinetic Spatial Cues
The position of the division site dictates the size and fate of daughter cells in many organisms. In animal cells, division-site placement involves overlapping mechanisms, including signaling from the central spindle microtubules, astral microtubules, and spindle poles and through polar contractions [1-3]. In fission yeast, division-site positioning requires overlapping mechanisms involving the...
متن کاملRedundant Mechanisms Recruit Actin into the Contractile Ring in Silkworm Spermatocytes
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction c...
متن کاملActomyosin Transports Microtubules and Microtubules Control Actomyosin Recruitment during Xenopus Oocyte Wound Healing
BACKGROUND Interactions between microtubules and actin filaments (F-actin) are critical for cellular motility processes ranging from directed cell locomotion to cytokinesis. However, the cellular bases of these interactions remain poorly understood. We have analyzed the role of microtubules in generation of a contractile array comprised of F-actin and myosin-2 that forms around wounds made in X...
متن کاملCell Division Requires a Direct Link between Microtubule-Bound RacGAP and Anillin in the Contractile Ring
The mitotic microtubule array plays two primary roles in cell division. It acts as a scaffold for the congression and separation of chromosomes, and it specifies and maintains the contractile-ring position. The current model for initiation of Drosophila and mammalian cytokinesis [1-5] postulates that equatorial localization of a RhoGEF (Pbl/Ect2) by a microtubule-associated motor protein comple...
متن کاملARHGEF11, a regulator of junction-associated actomyosin in epithelial cells
Epithelial cells form organized sheets to protect underlying tissues and maintain the physiological environment by the assembly of tight junctions (TJs) and adherens junctions (AJs), which mainly regulate paracellular molecular passage and selective cell-cell adhesion, respectively. At the cytoplasmic surface, TJs and AJs associate with a specific actomyosin cytoskeletal structure called the pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 137 16 شماره
صفحات -
تاریخ انتشار 2010